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A workshop reviewing the current research on long-wave run-up was held in the 
Marine Science Center of the University of Southern California at Catalina Island, 
California, in August 1990. The workshop covered theoretical, experimental, and 
field studies of run-up phenomena. The primary application of the research results 
discussed was in tsunami run-up and flooding and in tsunami run-up hazard 
mitigation. Certain other applications of long-wave run-up related to wind waves 
were also discussed. This report summarizes the twenty-six papers presented and it 
provides one particular view of the current understanding of this run-up process. 

1. Introduction 
The run-up motion of water waves on a sloping solid boundary is a challenging 

problem in hydrodynamics involving non-trivial interactions of all three phases of 
matter. Flow motions near the run-up front display strong nonlinearity in 
comparison to the motions away from the front. Waves near the front often break, 
the flows become turbulent and intrinsically three-dimensional. Effects of the 
bottom friction can become important near the front as the water depth vanishes 
along the shoreline. In the laboratory, the surface tension effects also become 
important in the run-up front dynamics. The fluid dynamics of the run-up processes 
is complex and many aspects are still not well-understood. Nevertheless, an accurate 
method for estimating run-up motions is crucial for the prediction of forces on man- 
made structures exposed to ocean environments and of the coastal effects of tsunamis 
and storm surges. 

A workshop to review the current understanding of long-wave run-up was held in 
the Marine Science Center of the University of Southern California on Catalina Island 
from 15-18 August 1990. Although topics discussed were focused on ‘long’ wave run- 
up, certain other related water-wave problems were also included. The workshop was 
designed specifically to foster close interactions among a wide spectrum of experts, 
including fluid mechanicians, tsunami specialists, coastal engineers, oceanographers, 
and applied mathematicians. Four workshop participants came from Japan, seven 
from the Soviet Union, one from England, one from Canada, one from Puerto Rico, 
and twenty-nine from the United States. The secluded location, the diversity of the 
contributors’ backgrounds and the range of their research interests contributed to 
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the stimulating discussions throughout the duration of the workshop. Topics ranged 
from the fundamental considerations of the contact-line dynamics and its 
mathematical singularity to  tsunami run-up hazard mitigation. A list of the papers 
contributed is given in the Appendix. In this report we attempt to summarize the 
papers which are directly related to  fluid mechanics ; other papers are only mentioned 
briefly. 

In  $2 we summarize the papers on the run-up of unbroken waves, including 
solutions of the potential water-wave theory, the shallow-water wave approximation, 
and the full NavierStokes equations. These rather ‘ clean ’ theoretical considerations 
will be followed in $3  by studies of broken-wave run-up, most of which are primarily 
based on the shallow-water wave theory. I n  $4 we discuss controlled laboratory 
experiments on wave run-up. Engineering applications of the numerical models are 
reported in $5 ,  followed by field observations in $6. 

Since many of the presentations discussed shallow-water wave theory, we first 
briefly describe this theory. The shallow-water wave theory is based on the depth- 
averaged equations of mass and momentum conservation. The derivation of these 
equations involves the assumptions that water is an incompressible and inviscid fluid 
with no surface tension, that  the water depth is small in comparison with the 
characteristic horizontal lengthscale of the motion ; consequences are that the 
pressure field is hydrostatic everywhere, and that the velocity is uniform throughout 
the depth. If we consider one-dimensional wave propagation for simplicity, the 
equations of mass and momentum conservation are, respectively, 

and 

83 a - + - { ( q + h ) u }  = 0, at ax 
au au aq 
-+u-+g- = 0 ;  
at ax ax 

u is the depth-averaged horizontal velocity in the x-direction, 71 and - h  are the 
water-surface and the bottom-boundary elevations from a reference datum, g is the 
gravitational acceleration, and x and t denote the horizontal spatial coordinate and 
time. These equations are known as the shallow-water wave equations. 

2. Unbroken waves 
The workshop was opened by G. F. Carrier’s stimulating lecture on tsunami 

generation, propagation and run-up. Using the shallow-water wave theory, he 
discussed the generation of tsunamis from a bottom displacement limited to a finite 
strip, and then demonstrated the three-dimensional nature of the resulting free- 
surface elevation. For a typical tsunami, he showed that frequency dispersion is 
important in the propagation from the source to the coastline, but unimportant in 
the evolution of the leading wave on a sloping beach, hence the nonlinear shallow- 
water wave equations, e.g. (1) and (2), are the legitimate equations for modelling 
certain coastal effects of tsunamis. Carrier then summarized his classic run-up 
solutions for the nonlinear shallow-water wave equations (Carrier & Greenspan 
1958) ; these solutions were obtained by adopting the hodograph transformation 
which was first developed for gas dynamics (e.g. Courant & Friedrichs 1948). He 
pointed out that the reflection of a single positive Gaussian-shaped incident wave 
forms a longer wave with a strong N-wave character (Carrier & Noiseux 1983), and 
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emphasized the importance of the beach slope on the reflection characteristics of 
obliquely incident long waves. This was verified in C. E. Synolakis’s presentation 
which showed that even a t  normal incidence, Gaussian-shaped waveforms produced 
N-wave-shaped reflections. 

C. E. Synolakis discussed extensions of Carrier & Greenspan’s theory to  solitary 
and cnoidal waves (Synolakis 1987; Synolakis, Deb & Skjelbreia 1988). He presented 
a solution to (1) and (2) for the topography of a constant-depth region evolving into 
a plane beach using Fourier transforms in time and remarked that when comparison 
with laboratory data is desirable, Fourier decomposition in time appears more 
advantageous than transforms in the spatial variable. His presentation for solitary 
waves included contour-integration results for the maximum run-up, the breaking 
criterion and the evolution far from the shoreline (Synolakis 1991). Asymptotic 
expansions of the series representations of his contour integrals result in the following 
expressions : R/d = 2.83 (H/d)i(cotP)i for the maximum run-up R ; H/d < (cot /3)9 for 
a breaking criterion during rundown ; and qmsx/H = (d cot /3/x)i for the maximum 
height evolution. In  these expressions, d denotes the constant water depth offshore, 
H is the offshore wave height a t  the constant-depth region, cotp is the beach slope, 
and x is the distance from the shoreline. The behaviour of qmax follows Green’s law 
(Green 1837). Synolakis further showed that cnoidal waves of a given wavelength 
and amplitude produce significantly higher maximum run-up than the corresponding 
sinusoid with the same kinematic characteristics (Synolakis et al. 1988). He 
emphasized that the apparent excellent predictive capability of the shallow-water 
wave equations on the evolution of the maximum wave height and on the maximum 
run-up should not be extrapolated to  conclude that the details of the evolution are 
also modelled equally well in all cases. Lastly, a computer animation of a solitary 
wave climbing up a sloping beach was presented. 

Both Carrier and Synolakis demonstrated that generalizations of their linear or 
nonlinear theoretical results for continuous frequency distributions are not as 
straightforward as is often assumed. Several predictions valid for monochromatic 
waves may not be valid for waveforms with continuous frequency distributions. This 
is because the phase changes which are introduced during the evolution of a single 
sinusoid are frequency dependent ; even though they may not distort the individual 
sinusoidal form, they distort the superposition of sinusoids. One good example is the 
reflection of long waves off a sloping beach ; if one uses the linear theory result for 
periodic waves, one would conclude that the reflected wave would have a similar 
shape to the incident wave. On the contrary, the reflected wave is quite distorted, 
and one-signed Gaussian-type incident waves produce two-signed N-wave-type 
reflections. 

Examples of the wave-reflection effects were presented by R. Kh. Mazova based 
on the linearized shallow-water wave equations. Considering two incoming waves of 
theformq=H,sinw,twhen - n < w l t  < O a n d q =  H,sinw,twhenO<o,t<n,she 
demonstrated that for this particular condition a leading wave with negative 
elevation produces higher run-up than a leading wave of positive elevation. 

E. N. Pelinofsky discussed another extension of Carrier & Greenspan’s (1958) 
shallow-water wave analysis, to  channels with a class of symmetrical cross-sectional 
shapes described by h(x, y) = hO-alylm, where a is a constant, m is a positive number 
and y points horizontally in the direction perpendicular to  the main flow direction, 
x. He confirmed the invariance of predictions of the maximum run-up in linear and 
nonlinear theory. Some aspects of the dissipative nature of the solution obtained by 
modifying the theory to  include frictional effects were also discussed. 
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A rigorous mathematical analysis of wave run-up phenomenology was presented 
by R. E. Meyer. He first pointed out the difficulty in selecting a lengthscale for the 
wave run-up on a uniformly sloping beach. For a small beach slope, it was shown that 
the shallow-water wave approximation is valid. He then discussed how the 
breakdown of Carrier & Greenspan’s (1958) analysis (which occurs when the Jacobian 
of the transformation becomes singular) is most often interpreted erroneously as 
wave breaking. He noted that in their presentations, Kajiura, Pelinofsky, and 
Synolakis all suggested that breaking criteria based on the singularity of the 
Jacobian predict earlier breaking than observed in the laboratory and in some 
numerical simulations. Meyer’s explanation of this discrepancy was that, prior to the 
solution breakdown, the computed fluid acceleration takes values of the order of 10 g 
indicating that the model scaling is no longer correct; hence the singularity of the 
Jacobian does not represent physical wave breaking but an intrinsic failure of the 
shallow-water wave model. 

Meyer also presented his analysis on shoreline singularity and its characteristics 
based on the inviscid theory (Meyer 1988a, b) .  To obtain results which are both 
physically and mathematically correct, Meyer extended his previous analysis for an 
inviscid fluid by using the Navier-Stokes equations and by including surface-tension 
and viscous effects (Meyer et al. 1991). In the offshore region where the depth is 
significantly greater than the boundary-layer thickness, the boundary-layer model 
developed by Mahony & Pritchard (1980) is adequate. However, the boundary-layer 
approximation becomes inadequate to describe the region near the shoreline where 
the depth is smaller than or comparable to the local boundary-layer thickness. Meyer 
showed that this very shallow region (of the order of less than a few centimetres from 
the shoreline) plays a decisive role in wave reflection. He then discussed the viscous 
shore singularity, which implies that the Newtonian no-slip boundary condition 
becomes invalid a t  the shoreline. This singularity was first noted by Dussan V. & 
Davis (1974) in the context of the contact-line dynamics. (If the no-slip boundary 
condition persists, the gas-liquid-solid contact line cannot move because the force at  
the contact line becomes singular.) The dynamics of this viscous singularity are still 
not well understood. 

M. H. Teng presented a combined analytical and numerical solution for the 
evolution of weakly nonlinear, weakly dispersive and forced waves in a variety of 
channel cross-sections. The formulation is based on the integration of the Euler- 
equation system over the channel cross-section with a perturbation method. She 
presented the results for the evolution of waves over a step. 

C. C. Mei presented a multiple-scale perturbation theory to study a harbour 
resonance caused by incident wave groups. The harbour entrance was assumed to be 
much wider than the shortest wavelength and much smaller than the longest 
wavelength. The approximate analytical solutions were obtained using the geometric 
ray theory and the parabolic approximation. He then demonstrated how free long 
waves can be generated and resonated inside a harbour (Mei & Agnon 1989; Wu & 
Liu 1990). 

Numerical models based on the shallow-water wave theory are rapidly becoming 
obsolete for the basic study of the wave motions, especially when the problem 
involves no wave breaking. For non-breaking waves, analytical integral expressions 
are available and they can be evaluated directly without having to discretize the flow 
field. Also, the recent advances in the boundary-element computational method 
allow for numerically exact solutions of the full potential water-wave theory. S. Grilli 
& I. A. Svendsen discussed two-dimensional flows in the vertical plane using their 
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FIGURE I .  A snap shot of numerical solutions for a three-dimensional run-up in a square basin. The still 
water surface area is 4 units by 4 units and the uniform beach slope is 1:3.5. The constant depth is one unit 
and it is the characteristic lengthscale. The dimensionless time step size is 0.01 and the entire boundary has 
been divided into 512 elements. 

Liu. SYNOLAKIS & YEH (Facing p ,  679) 
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numerically exact boundary-element algorithm. Unlike Stokes’ solution to the 
potential wave theory, their numerical solution does not involve perturbation 
expansions, thus it is valid even in shallow water provided that the fluid is inviscid 
and the flow is irrotational. Grilli & Svendsen presented detailed results for the 
vertical distribution of the velocity field, and also run-up results for solitary waves. 
The accuracy of their model was demonstrated by comparing it with laboratory data 
(Grilli & Svendsen 1990a, b) .  

Using a similar boundary-integral method, D. H. Peregrine presented a numerical 
simulation of a collision of two identical breaking waves propagating in opposite 
directions. With this set-up, the impact and run-up of a wave breaking onto a 
vertical wall can be modelled (Cooker & Peregrine 1990). The results of this 
numerically exact simulation indicate that during the impact of the breaking wave 
on the wall, the fluid acceleration could reach up to 10000 g. An extremely localized 
and gigantic pressure rise occurs during wave impact and the transient value of 
C)p/C)t = 3000 p&i was reported (h  is the initial depth in front of the wall). Note that 
such pressure spikes on a vertical wall are known as shock pressures from laboratory 
experimental data (Hiroi 1919; Bagnold 1938 ; Minikin 1950). Peregrine’s result 
appears to be the first successful demonstration of the detailed shock-pressure 
phenomenon without resorting to empiricism ; a typical empirical prediction formula 
is, for example, Minikin’s (1950) equation. Peregrine also noted that even at these 
high pressures compressible effects were estimated to be unimportant. 

The boundary-element method was further extended to a three-dimensional flow 
problem by P. L.-F. Liu. Animated numerical results were shown for a wave sloshing 
in a square basin and three-dimensional run-up motions on a uniform beach. These 
motions were generated by initially imposing a Gaussian distribution of negative 
pressure on the free surface, with its maximum located at  the middle of the offshore 
endwall. This distribution generates a semicircular wave from the middle of the 
endwall. Multiple reflections from the sidewalls create a wave field with truly three- 
dimensional features. A typical ‘snap shot’ of the flow field is shown in figure 1 
(plate 1).  The velocity potential has been mapped onto the free surface with the red 
and blue hues corresponding to the wave crests and troughs respectively. Liu’s 
numerical model demonstrated a feasibility of solving for complicated truly three- 
dimensional run-up motions. Liu stressed that like any other numerical model, his 
numerical solutions need to be validated with laboratory data. 

Grilli, Liu, Peregrine and Svendsen all demonstrated the advancement in 
numerical solutions of the long-wave evolution and run-up problem. The reported 
robustness of the algorithms, the flow-detail resolution attained, the large 
accelerations and the three-dimensional effects that the method can handle indicate 
that a boundary-element numerical approach is an important tool for understanding 
the characteristics of run-up phenomena. 

3. Broken waves 
Once waves break, the fluid motions become turbulent and the potential-theory 

models are no longer adequate. Obvious alternatives are turbulence closure models 
based on the Reynolds equations in a full three-dimensional flow field (turbulence is 
three-dimensional). However, their application to wave run-up has not yet been 
explored, perhaps because of the difficulties associated with the involvement of the 
free-surface boundary and the highly unsteady nature of the flow. One of a very few 
attempts to apply the turbulence closure model was introduced by Svendsen & 
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Madsen (1984). Even though it is based on the shallow-water wave theory their 
model is a k-e type of turbulence closure model for the bore propagation. The 
necessary parameters used were determined from laboratory data on hydraulic 
jumps. The three-dimensional and higher-order turbulence closure modelling 
technique has not yet been applied to  the run-up of broken waves. 

K. Kajiura reviewed the existing wave-breaking criteria and discussed the types 
of eddy motion created by wave breaking in the laboratory. Based on large-scale 
laboratory experiments in Japan, a description and classification of wave breaking 
processes were presented. As a long wave propagates over the contincntal shelf, it can 
fission into a series of solitary waves (Madsen & Mei 1969) depending on the wave 
steepness and the bottom slope. These series of solitary-type waves are generated 
only a t  the leading edge of the original carrier long wave and ride on the gradual 
variation of the main wave. These solitary waves may break, but the energy of 
the carrier long wave is approximately conserved. Therefore local wave breaking 
in a very long wave does not influence the maximum wave run-up height sig- 
nifican tly . 

Numerical simulations of a series of bores on a sloping beach were presented by 
D. H. Peregrine. First was a discussion of the Lax-Wendroff numerical scheme 
developed for a single uniform bore (Hibberd & Peregrine 1979) and its extension to 
a series of bores (Packwood 1980). Peregrine suggested that when a uniform train of 
bores approaches the shore, the solution settles to a steady state shortly after several 
bores have climbed up the beach with relatively small shoreline motions. On the 
contrary, when random perturbations are forced in either the wave frequency or the 
amplitude, the variations of resulting run-up are significantly enhanced. One can 
conclude from his results that a uniform train of bores is not an adequate model for 
natural conditions. It was also suggested that the discrepancy between the predicted 
and observed maximum run-up height caused by bores (Hibberd & Peregrine 1979; 
Miller 1968) can be due to surface-tension effects in a laboratory environment. 
Peregrine also showed comparison with the run-up measurements of Hawkes 
(reported in Packwood 1980) where the numerical run-up motion was relatively far 
from the laboratory data ; however, Hawkes’s equipment measured run-up a t  a 
height of 2 mm above the beach and indeed the comparison of the theoretical results 
with the 2 mm contour data was satisfactory. This observation appears to be another 
manifestation of the fact that  shallow-water wave theory predicts an extremely thin 
layer of run-up, as also seen in Shen & Meyer (1963). 

Z. Kowalik presented a computational algorithm for calculating the run-up of 
bores in one-dimensional propagation using the shallow-water wave equations 
modified with a friction term. He also showed some two-dimensional results on the 
sloshing motion of non-breaking waves inside a closed parabolic basin. 

The numerical model for bore run-up based on the Lax-Wendroff scheme was first 
introduced by Hibberd & Peregrine (1979). This model was extended to include 
bottom friction effects and to apply to a random bore field by Packwood (1980) and 
Kobayashi and his colleagues (Kobayashi & Greenwald 1987; Kobayashi et al. 1988; 
Kobayashi, DeSilva & Watson 1989; Kobayashi, Cox & Wurjanto 1990). Because of 
the scheme’s intrinsic ability to handle broken waves (or bore fronts) in the flow, its 
application has become quite popular. In  essence this numerical scheme allows the 
modelling of a broken wave without having to directly model turbulent dissipation. 
Applying this model to a surf zone, a symmetrical wave profile outside the 
breakpoint evolves to an asymmetrical sawtooth-shaped profile in the inner surf 
zone, a behaviour which is qualitatively consistent with field observations. This 
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prediction is not new nor surprising ; Airy pointed out this front face steepening effect 
of the shallow-water wave theory in 1845 (see, for example, Peregrine 1983). 

Because this numerical model is based on the shallow-water wave theory, it adopts 
the assumptions that the pressure field is hydrostatic and the velocity distribution 
is uniform in the vertical direction. These assumptions must be satisfied at every 
discretized point in the numerical scheme, including the bore front. This requirement 
is in violation of the true physical situation near the bore front. On the other hand, 
the traditional analytical approach for a single flow jump, by ignoring details at  the 
discontinuity, does not entail calculations on a discrete point of the flow field. 

To examine the approximations involved in the shallow-water wave equations, we 
proceed by integrating the Navier-Stokes equations for an incompressible fluid in the 
vertical direction. Assuming the bottom slope to be small (ahlax < l), the equations 
in the two-dimensional flow field in a vertical plane can be written as 

a7 a -+-{(q+h)u} = 0, at ax (3) 
and 

u u  - - u w  +-- (4) -+u-+g- = ---+up-- 
at ax ax pax  ax2 ax a2 h+q rur a2 z--h 

au au a7 i a p  a*u a a - - 
( a )  (b)  (c) (4 

where u is the horizontal component of the flow velocity, u is the depth-averaged 
horizontal velocity, q and h are respectively the water-surface elevation and the 
water depth from a referenced datum, p is the dynamic pressure (i.e. the total 
pressure minus the hydrostatic pressure), v is the kinematic viscosity of the fluid, u' 
and w' are the deviations of the horizontal and vertical components, respectively, 
from the vertically averaged velocities, and the overbar denotes an average over the 
depth. The components u' and w' include both the turbulent fluctuations and the 
time-averaged deviations caused by the non-uniformity of the velocity over the 
depth. Note that the continuity equation (3) is identical to (l), but that the depth- 
averaged momentum equation (4) - in comparison to (2) - includes five extra terms 
on the right-hand side. The approximations in the shallow-water wave version of the 
conservation of momentum (2) arise from neglecting the dynamic pressure field (term 
a) ,  viscous diffusion effects (term b),  the excess momentum flux due to turbulence and 
non-uniformity of the velocity profile in the vertical direction (term c), and the shear 
forces acting on the free surface and the bottom boundary (term d ) .  In water waves 
of reasonable scale, the viscous effects and the shear force at the air-water interface 
are usually small and can be neglected. Therefore the validity of the shallow-water 
wave approximation essentially hinges on the magnitude of terms (a) and (c) and the 
lower limit of ( d ) .  The pressure-gradient term (a )  becomes significant in breaking 
waves. The importance of (c) in a su r f  zone was demonstrated experimentally by 
K. Fujima in this workshop and it is discussed in $4. 

It is emphasized that a spatially discretized numerical model based on the shallow- 
water approximation must satisfy the assumptions at every discretized point, which 
includes the bore front and the regions of strong shear flow. When a single uniform 
bore is considered (Hibberd & Peregrine 1979), errors caused by the discretization of 
the bore front may not be significant; however, when a series of bores or broken 
waves is considered, the validity of the single-bore model is questionable because the 
flow field is non-uniform in the vertical direction owing to strong shear action, 
usually arising from the backwash flow ; this non-uniformity causes errors which are 
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cumulative and affect the entire flow domain. In  the case of a steep bed, for example 
/3 = in, the depth-integrated formulations themselves, (3) and (4), become invalid. 
Interestingly, even though many assumptions of the shallow-water wave theory are 
violated in the surf zone, certain quantitative and qualitative comparisons of its 
predictions with the experimental or field data often produce good agreement : this 
is puzzling. 

4. Laboratory experiments 
Experiments in a controlled laboratory environment have often been performed to  

explore the physics of run-up phenomena and to  confirm or refute analytical and 
numerical models. A survey of laboratory run-up investigations was presented by 
F. Raichlen. Different methods of wave generation were discussed ranging from the 
state-of-the-art (Goring & Raichlen 1980 ; Synolakis 1990) to  the mechanical wave 
generator used in a classic work by Hall & Watts (1953). Raichlen suggested that i t  
might not be necessary to generate a very ‘clean’ solitary wave to study the run-up 
motion of the first wave; only the shape of the leading portion of the wave is 
important. On the other hand, if the purpose of the experiment is to  compare with 
a theory or a numerical model, it must consider the complete wave with initial 
conditions. The need was stressed for three-dimensional experiments on a large scale 
so that scale effects are minimized. It was noted that scale effects manifest 
themselves in the laboratory through surface tension, run-up on dry and wet 
surfaces, bottom and sidewall friction, percolation, and breaking. 

The transition processes from a single uniform bore to the run-up motion on an 
initially dry beach were investigated by Yeh, Ghazali & Marton (1989). They found 
that for a fully developed bore the process observed experimentally is different from 
Ho & Meyer’s (1962) ‘bore collapse ’ prediction. The experiments showed that the 
bore front itself does not reach the shoreline directly, but instead the bore collides 
with and then pushes a small wedge-shaped body of-water ahead of it. K.-M. Mok 
presented a new set of experimental results using a modified laboratory facility like 
that used by Yeh et al. (1989). Using a video system combined with a computer-aided 
analysis, Mok demonstrated that for a fully developed bore, the bore front is 
irregular and the transient process is intrinsically three-dimensional. This three- 
dimensional feature might contribute to the discrepancy in the maximum run-up 
height between theoretical predictions and laboratory data. Three different run-up 
processes were identified : a smooth and unbroken run-up, overturning of a bore front 
onto the dry bed, and the transient process described by Yeh P t  al. (1989). Different 
run-up processes resulted in different maximum run-up heights. 

J. A. Zelt presented his experimental data on the overland flows on a horizontal 
bed generated by an incident solitary wave. The water depth in the experiments 
varied gradually and smoothly from a constant-depth section (a horizontal bottom) 
to a zero-depth section. By comparing his numerical solutions of the one-dimensional 
Boussinesq equation, Zelt found that the bottom friction is not important during the 
initial collapse of solitary waves on the horizontal bed (Zelt & Raichlen 1991) but 
that  it becomes a dominating factor in the overland flow. 

J. D. Ramsden discussed an experiment on the impact forces on a vertical wall by 
a broken wave evolved from a solitary wave offshore. He showed that the maximum 
run-up of the water on the wall occurred prior to the maximum force exerted on the 
wall (Ramsden & Raichlen 1990). 

K. Fujima presented results from two separate laboratory studies, one dealing 

- 
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with the velocity measurements within the bottom boundary layer near the 
shoreline, and the other with measurements of the velocity field in a stationary 
hydraulic jump. A laser-Doppler velocimeter was used in both studies. An inclined 
moving-bottom device made of a smooth hard rubber belt was used in a water tank; 
the device rendered the run-up motions stationary and allowed for a relatively 
complete documentation of the flow field near the tip. (Note that the resulting steady 
flow is not identically equivalent to the run-up motion ; the wave run-up is transient 
and non-uniform in the water-surface elevation.) For this steady flow, the bottom 
boundary layer appeared to be similar to the logarithmic velocity deficit law for a flat 
plate, except in the region very near the shoreline tip where the water depth becomes 
zero and the ‘thin ’ boundary-layer assumption becomes invalid. In  the hydraulic 
jump study, the measured velocity field was used to evaluate the terms in the depth- 
integrated equation of motions (4). He found that in front of the hydraulic jump the 
excess momentum flux due to the non-uniform velocity distribution (i.e. the term (c) 
in (4)) is significant and comparable to the magnitude of hydrostatic pressure 
gradient. Although local flow characteristics are different in a bore and in a hydraulic 
jump, as shown by Yeh &, Mok (1990), Fujima’s findings support the discussion in 53. 
The prediction based on the shallow-water wave theory cannot provide adequate 
information on the flow field near a bore front. 

Experimental results on nonlinear wave motions on a plane beach in a three- 
dimensional basin were presented by J. Hammack. Two obliquely intersecting 
cnoidal wave trains were generated from a directional wave maker. Through the 
nonlinear interaction between these wave trains, a hexagonal wave pattern evolved, 
which represented a subset of the solutions of the Kadomtsev-Petviashvili equations. 
The hexagonal wave pattern persisted even after breaking, resulting in periodic rip 
currents along the beach (Hammack, Scheffner & Segur 1991). 

5. Numerical prediction models - field applications 
Numerical models designed to predict tsunami-run-up in the field were presented 

by N. Shuto, C. L. Mader, and V. Titov. Based on his finite-difference numerical 
solutions of the shallow-water wave equations and on an extensive amount of field 
observations, Shuto described a wide range of physical details of the phenomenon. 
He demonstrated that detailed initial conditions are essential for the prediction of 
coastal effects of tsunamis. The importance of the accurate modelling of three- 
dimensional bathymetry in the prediction of the wave focusing nearshore was also 
emphasized. Shuto’s numerical results show how three-dimensional tsunamis can be 
and how multiple wave interactions and reflections must be considered to predict the 
coastal effects accurately. He suggested that the 1983 Nihonkai-Chubu tsunamis 
were trapped along a fairly uniform coastline. Field and laboratory data of edge 
bores were also discussed; edge bores are waves propagating in the longshore 
direction with wave breaking in the cross-shore direction. 

C. L. Mader presented his numerical code which solves the two-dimensional depth- 
integrated shallow-water wave equations and which includes a ChBzy-type friction 
coefficient. A PC-based computer animation for the leading wave of a sinusoid wave 
approaching the South Kohala region of the island of Hawaii and the resulting run- 
up motions was shown. 

V. Titov presented the Novosibirsk (USSR) Computing Center’s finite-difference- 
type solution algorithm of the two-dimensional depth-averaged shallow-water wave 
equations. His algorithm was optimized to run on PC systems in real tsunami time. 



684 P. L.-F. Liu, C. E .  Synolakis and H .  H .  Yeh 

This type of model may be very effective in the rapid estimation of adequate 
shoreline inundation distances for civil defence applications. 

6. Field observations 
R. T. Guza gave a comprehensive presentation of the nearshore field measurements 

and of the numerical modelling efforts a t  the Shore Processes Laboratory in the 
Scripps Institute of Oceanography. He first described the field instrumentation and 
its limitations, and outlined the known processes occurring in a natural surf zone 
(Guza 6 Thornton 1980; 1981, 1982; Elgar & Guza 1986). Run-up data obtained 
with a wire wave gauge parallel to  the beach face were then presented. Guza pointed 
out that edge waves are evident in the dispersion-relation diagram. The formation of 
edge waves implies trapping of energy, necessitating the adoption of three- 
dimensional formulations for describing the process. 

M. Mizuguchi described his field experiments in Japan and discussed the problem 
of identifying the different wave components of a measured spectrum. He presented 
methods for separating the incident and reflected waves in wind-wave-generated 
swells in the surf zone. It was shown that the frequency-domain data do not produce 
meaningful results for the identification of breaking waves, swash and reflection in 
the surf zone. He demonstrated the usefulness of the wave-by-wave approach of 
analysing field data. 

Guza & Thornton (1982) and Mizuguchi (1982) suggested that when wind waves 
climb up a natural beach, the maximum run-up is controlled by the energy in the 
long-wave part of the spectrum. These waves have periods from 0.5 to 5 min and are 
commonly referred to as surf beats or infragravity waves. As waves approach a shore, 
wave shoaling causes the energy to  spread over a wide spectrum via nonlinear triad 
interactions. Then wave breaking causes the energy carried by the shorter waves to 
dissipate. Observations in the inner surf region suggest that, after breaking, the local 
height-to-depth ratio is approximately constant : a phenomenon which is now 
referred to as ‘saturation’. By contrast the infragravity waves do not exhibit 
saturation. Guza & Thornton’s (1982) field observations suggested that long-wave 
energy varies almost linearly with the incident offshore wave energy indicating that, 
on natural beaches where waves break, the long-period motion drives the run-up 
process. These field observations and Kajiura’s hypothesis, as discussed earlier, 
imply that the effects of the breaking of the shorter waves in very ‘long ’ wave groups 
and tsunamis may be of second order for the determination of the maximum run-up 
height. 

R. G. Dean presented a method for calculating the long-wave component of surf 
beats over a uniformly sloping beach. Instead of using the first-order or the second- 
order Stokes’ wave theory, the stream-function theory (Dean 1965) was used. In deep 
water both approaches produce similar results, but in shallow water, Stokes’ theory 
breaks down and the stream-function theory gives better results. He showed that his 
surf-beat wave model can be used to  predict the low-frequency spectrum from a 
given deep-water spectrum. The numerical results were shown to agree reasonably 
well with those of Goda (1975). 

J.  F. Lander presented an overview of historical records of tsunami inundation 
field data. He noted that the existing qualitative observational data base has been 
enriched significantly by scrupulously researching available sources. The importance 
of the critical evaluation of qualitative data, when the data are used to validate 
numerical models. was stressed. 
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G. D. Curtis described the historical evolution of tsunami zoning in Hawaii and the 
different empirical formulae that had been used to establish inundation zones. 
Various evacuation maps were said to be incomplete and obsolete. He emphasized 
the need for collaboration and interaction between tsunami zoning-type modelling 
and actual tsunami observations. 

E. N. Bernard emphasized the link between the modelling work and actual 
tsunami zoning and civil defence strategies. He pointed out the importance of the 
development of both site-specific and source-specific zoning maps. The tsunami 
inundation was shown to be a function of local site factors and distant source 
characteristics. 

F. I. Gonzalez described the five long-term tsunami monitoring stations near the 
Shumagin Seismic Gap together with some recent measurements of small tsunamis 
acquired in the open ocean; these measurements were obtained with pressure gauges 
with resolution of 1 mm in waves with periods greater than 5 min at a depth of up 
to 7000 m. 

7. Concluding remarks 
From the presentations and discussions in this workshop, it is evident that, based 

on the shallow-water wave theory, analytical solutions can be obtained for the 
calculation of run-up of different types of one-dimensional non-breaking long waves 
on a simple beach topography (e.g. a uniformly sloping beach). The run-up of a single 
bore (a broken wave) can also be solved analytically using the shallow-water wave 
equations in a fluid domain with a uniformly sloping beach. For a series of bores, the 
run-up solutions can be obtained numerically. However, these numerical results, 
especially those involving wave breaking, must be carefully interpreted since the 
intrinsic assumptions of the shallow-water wave equations may be significantly 
violated in certain areas of the flow. 

Numerical algorithms based on the boundary-element method can provide 
numerically exact solutions of the full potential water-wave theory including wave 
run-up motions. The two-dimensional boundary-element model has been shown to be 
very robust and accurate. The extension of such a numerical model to the flows in 
a fully three-dimensional fluid domain was promisingly demonstrated. Considering 
extremely successful implementations of the two-dimensional version of the schemes, 
further development and validation of the three-dimensional model are anticipated. 
Shortcomings of the potential water-wave theory are that the models cannot handle 
the flow after wave breaking, and also that -owing to the strong influence of the 
boundary - the predicted run-up motions may not be accurate for a real fluid flow 
environment. Further research is needed to include the dissipative effects in the 
boundary-integral formulation. 

There are many unsolved fluid mechanic problems related to long-wave run-up. 
Most of the unsolved problems relate to transition to turbulence, in particular in 
wave breaking. There is no physically sound theory available describing the 
generation of turbulence by wave breaking. The fluid dynamics of the contact line 
(where the boundary-layer theory breaks down) are also not well understood. As far 
as practical engineering applications are concerned, one of the immediate needs for 
model improvement is to predict accurate effects of three-dimensional bathymetry. 
In the field, the three-dimensional effects (e.g. wave focusing) on the wave run-up 
often dominate other detailed factors. 
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